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An analytical model is developed to study the sound produced by the interaction between

shock and instability waves in two-dimensional supersonic jet flows. The jet is considered

to be of vortex-sheet type and 2D Euler equations are linearised to determine the

governing equations for shock, instability waves, and their interaction. Pack’s model is

used to describe shock waves, while instability waves are calculated using spatial stability

analysis. The interaction between shock and instability waves can be solved analytically

by performing Fourier transform and subsequently using the method of steepest descent.

Sound produced by the interaction between the instability wave and a single shock cell

is studied first, after which that due to a number of cells follows. We find that the model

developed in this study can correctly predict the frequencies of the fundamental screech

tone and its first and second harmonics. We show that the predicted sound directivity,

even from a single shock cell, is in good agreement with experimental data. In particular,

this model shows the strongest noise emission close to the upstream direction but the

emitted noise starts to rapidly decay as the observer angle approaches 180 degrees, which

is in accordance with experimental results; this suggests that the effective noise from a

single shock cell is far from of the monopole type as assumed in the classical Powell’s

model. We find that the noise directivity is very sensitive to the local growth rate of the

instability waves and the noise is generated primarily through the Mach wave mechanism.

Key words:

1. Introduction

In many applications such as rocket engines, imperfectly-expanded supersonic jets are

often accompanied by a powerful emission of tonal sounds. Such tones are commonly

referred to as jet screech. In addition to the intensified noise emission, it may also lead

† Email address for correspondence: b.lyu@pku.edu.cn
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to disastrous structure damage because of sonic fatigue. It is, therefore, of practical

importance to understand the mechanism of supersonic jet screech and to devise effective

ways to suppress these screech tones.

Screech occurs in imperfectly-expanded supersonic jets, and such jets are often char-

acterized by quasi-periodic shock cells and are complex in nature. Jet screech was

first discovered in the experiment conducted by Powell in the 1950s. In his pioneering

work, Powell (1953a) proposed the well-established feedback loop which consists of four

stages, i.e. the instability growth in jets, the interactions between shock and instability

waves, the acoustic waves propagating upstream, and the receptivity of the shear layer

at the nozzle lip. Powell proposed the phase and gain conditions which must be satisfied

to sustain the feedback loop. For the phase condition, the frequency of the fluctuation f

is supposed to close the feedback loop as

N

f
=

d

Uc
+

d

c∗
+ Ψ, (1.1)

where d denotes the distance between the nozzle lip and the sound source, Uc is the

average velocity of the instability waves travelling downstream, c∗ is the speed of sound

propagating upstream, Ψ represents an additional phase delay, and N is an integer. For

the gain condition, the gain from each of the four stages must satisfy

Qηsηuηr > 1, (1.2)

where Q denotes the gain associated with the growth of the instability waves, and ηs,

ηu and ηr represent the efficiencies of energy transmission in the last three stages,

respectively. The resonance conditions were then reconsidered by examining the en-

ergy exchange between the instability and acoustic waves at the sound source loca-

tion and the nozzle exit (Landau & Lifshitz 1958). In the recent work, these condi-

tions (Landau & Lifshitz 1958) have been rewritten in terms of magnitude and phase

conditions, details of which can be found in Jordan et al. (2018) and Mancinelli et al.

(2021).

Two important characteristics of jet screech are widely studied over the past few

decades. The first is the screech frequency. Considering the feedback enhancement during

the loop, Powell proposed that the screech frequency f can be calculated via

f =
Uc

s(1 +Mc)
, (1.3)

where s, Uc, and Mc are the shock cell spacing, the convection velocity and the convective

Mach number of the instability waves, respectively. Subsequently, Tam et al. (1986) pro-

posed the weakest link theory suggesting the screech as the limit of the broadband shock-

associated noise (BBSAN) when the observer angle approaches 180◦. In 1999, Panda

(1999) discussed the link between screech and hydrodynamic-acoustic (HA) standing

waves, and a new formula was developed. In early measurements (Powell 1953a), it

was found that the screech frequency experienced abrupt changes as the inlet pressure
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increased. This frequency jumping phenomenon is commonly referred to as mode staging,

and four different stages, i.e. stages A, B, C, and D were observed by Powell, among

which the stage A can be further divided into two stages named A1 and A2 (Merle

1956). It was found that the azimuthal mode of both sound and instability waves

changes as the mode staging occurs, which shows a strong sensibility to the facility

and initial conditions (Anufriev et al. 1969; Gutmark et al. 1990; Panda et al. 1997), and

the switch from one mode to another is nearly immediate (Nagel et al. 1983). Despite

different stages show different characteristics, it is interesting to note that they can appear

simultaneously in one jet flow (Raman 1996). To interpret mode staging, Shen & Tam

(2002) suggested that it was the neutral acoustic waves, rather than free acoustic waves,

that complete the feedback loop in A2 and B modes. Recent works (Gojon et al. 2018;

Edgington-Mitchell et al. 2018; Li et al. 2020; Mancinelli et al. 2021) showed that both

the A1 and A2 modes were closed by the neutral acoustic waves (or guided-jet modes).

Gao & Li (2010) used the original phase condition shown in (1.1) and inferred the value

of N in their numerical study. They showed that N differed across various stages, and

when this difference was considered the prediction was in very good agreement with the

experimental data. However, the mechanism behind this mode transition and its high

sensitivity to the initial conditions are yet to be clarified. In addition, it was found that

nonlinearity could arise during the mode staging in circular jets (Mancinelli et al. 2019)

and screech tones were not independent but were instead nonlinearly phased locked to

each other in rectangular jets (Walker & Thomas 1997), which increases difficulties for

its modeling.

In addition to the screech frequency and mode staging, noise directivity is the second

characteristic that has been widely studied. It was found that the acoustic radiation

at the fundamental frequency appeared strongest in the upstream direction, whereas

at the harmonic frequency there was a strong beaming to the side of the jet (Powell

1953a). To explain this, Powell proposed the monopole array theory, which was generally

in good agreement with experiment results. The directivity of the fundamental tone

and its harmonics in supersonic round nozzles were measured by Norum (1983), the

results of which were compared with the monopole array theory when nine monopoles

with a parabolic intensity distribution were considered. One particularly interesting

observation was that the strongest emission appeared somewhere near 150◦, not 180◦

to the downstream jet axis. A quick decay occurred when the observer angle approached

180◦, which could not be predicted by Powell’s model. As a matter of fact, if all the

sound sources were monopoles and the frequency of the fundamental tone was obtained

by (1.3), the acoustic radiation would be the strongest at 180◦. Following Norum’s idea,

the directivity pattern of three equal-spaced monopoles of various intensities was studied

by Kandula (2008). It seemed that this variation did not affect the location of the

main directivity lobe. The temperature influence on the directivity pattern (Massey et al.

1994) was also investigated in round jets, but no significant difference was found from
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the unheated one. In the case of rectangular nozzles, the screech problem may become

more complicated compared to axisymmetric round jets. However, this problem can be

greatly simplified when the rectangular nozzle is of high aspect ratios, in which case it

reduces to a two-dimensional problem. Numerical simulations (Berland et al. 2007) and

experiments (Walker & Thomas 1997) were conducted to study the directivity patterns of

the screech and its harmonics in rectangular jets of high aspect ratios and the results were

similar to that of Powell (1953a). Recently, Tam & Parrish (2014) considered another

nonlinear interaction mechanism between shock, instability, and acoustic waves. They

then proposed a model to predict the lobe position in the directivity patterns. The

result was in good agreement with the experimental data (Norum 1983) at harmonic

frequencies, but appeared less so for the fundamental tone, in particular for the lobe

position.

As argued by Powell, four stages were involved in the screech cycle. Among the four

stages, it is believed that the interaction between the shock and instability waves plays

a critical role in understanding the physics of screech. Not only because this interaction

produces sound that is directly measurable, but also because it is the key to understand

the noise generation mechanism. Despite its importance, not many theoretical models are

proposed to predict the interaction. The reason is in part due to the complex flow nature

present in the interaction (Manning & Lele 2000), especially when the shock waves are

intense in highly underexpanded and overexpanded jet flows. Harper-Bourne & Fisher

(1973) used Powell’s phased-arraymodel to study the interaction between the disturbance

in jet shear layers and the shock cells. The frequency of the emitting sound was obtained.

Subsequently, Tam (1987) developed a shock cell model composed of time-independent

waveguide modes (Tam et al. 1985). The turbulence structures were modeled using a

noise initiated at the shear layer at the nozzle lip. The weak interaction between these

two components then gave rise to the sound field. Although the sound generated by shock-

vortex interaction was analytically studied in the first part of the work, it was remarked by

the author that (Tam 1987) “enormous amounts of numerical computations are required”

for practical calculations. Thus, “a model source function” was used instead in light of

the extreme complexity of the practical evaluation of the formulation to calculate the

directivity patterns of BBSAN. Lele (2005) further developed Tam’s theory. Based on

the method proposed by Lighthill (1952), he used the wavepacket model to describe the

instability waves initialized by the white noise, and a vortex sheet model was utilized to

calculate the shock cell structure. These two components were inserted into the Helmholz

equation as the source term. The sound field was obtained by integration. This model was

used in subsequent numerical simulations (Wong et al. 2019). However, the sound sources

in the above-mentioned models were obtained by a simple combination of the shock and

instability waves. A correct source term directly from governing equations would be

more desirable. A somewhat different approach to model the sound generation is the so-

called shock leakage mechanism. It was proposed by Manning & Lele (1998, 2000), and
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theoretically developed by Suzuki & Lele (2003) and Shariff & Manning (2013). Recently,

it was experimentally observed by Edgington-Mitchell et al. (2021b). In addition, a very

recent work (Nogueira et al. 2022b) numerically studied the linear stability characteristics

of shock-containing jet flows, where the shock was assumed to be of small amplitude

and a sinusoidal form. It was found that the characteristics of the instability waves in

shock-containing jets are different from those in shock-free supersonic jets, and a new

interpretation of screech was proposed based on this observation.

In 1994, Kerschen & Cain (1995) developed an analytical shock instability-wave inter-

action model for 2D planar vortex sheet flows. The source term was obtained directly

from the governing equations. One shock cell was considered to interact with the in-

stability waves near the vortex sheet. However, it was found that the radiation field

peaked at 48◦ to the downstream jet axis, which contradicted experimental observations.

Despite of numerous attempts, an analytical and quantitative study of the interaction

between the shock and instability waves, which is capable of predicting not only screech

frequencies, but also directivity patterns of screech tones, appears yet to be seen. This

paper aims to develop such a model to predict the sound arising from the interaction

between shock and instability waves. The model follows the asymptotic expansion method

proposed by Kerschen & Cain (1995), but a more realistic jet and shock cell structures

are considered. This paper is structured as follows. Section 2 presents a detailed analytical

derivation of the model, while section 3 shows the prediction of the screech frequency

and the directivity patterns of the fundamental tone and its harmonics. The near-field

pressure and noise generation mechanism are subsequently discussed. Conclusions are

presented in section 4.

2. Analytical formulation

2.1. The interaction model

To enable analytical progression, we start with a vortex sheet model. As shown in

figure 1, the coordinate axes (x′, y′) are chosen to be parallel and perpendicular to the

nozzle centreline, respectively. Here D is the jet height (note that D is generally not

equal to the height of the nozzle, and we take the height of the fully-expanded jet as the

base flow height (Tam 1972)). U1 is the jet velocity at the nozzle exit plane, while U is

the velocity of the fully-expanded jet after exiting from the nozzle. The fully-expanded

base flow described in figure 1 takes the form

u0 =







0, |y′| > D/2

Uex′ , |y′| 6 D/2,
(2.1)

where ex′ is the unit vector in the x′ direction. We assume that the shock and in-

stability waves are of small amplitudes and can be linearized around the base flow

and described by linear theories. Of course, it is known that the interaction between
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Figure 1. The schematic of the vortex-sheet flow configuration and Cartesian coordinates. The

origin is fixed at the centre of the nozzle while x′ and y′ represent the streamwise and cross-flow

coordinates, respectively.

the shock and instability waves primarily occurs several shock cells downstream from

the nozzle exit (Suda et al. 1993; Kaji & Nishijima 1996; Malla & Gutmark 2017). At

these locations, instability waves are likely to grow to a significant amplitude where

nonlinear effects become important and the instability waves may start to saturate and

even decay. However, it is known that linear theories can predict the wavelength of

these large coherent structures well beyond the linear stage (Crow & Champagne 1971;

Jordan & Colonius 2013; Edgington-Mitchell et al. 2021a). We may, therefore, use linear

stability analysis to determine the wavelength (hence convection velocity) of instability

waves, which are particularly important for the generation of screech tones. The linear

growth rate calculated describes the early evolving of the instability wave and its role

is discussed separately in subsequent modelling. The interaction between the shock and

instability waves several shock-cells downstream are likely to be nonlinear in strongly

underexpanded jets. However, a linear interaction model may suffice to describe the

interaction between weak shock and instability waves. Besides, similar to the successful

prediction of the wavelength and convection velocities of large coherent structures by

linear theories, a linear theory may still possess the many essential features of a nonlinear

jet screech. We therefore start with a linear interaction between the shock and instability

waves. With these assumptions we start to seek an analytical model describing noise

generation due to the interaction between shock and instability waves.

Given the fact that the Reynolds number is high and the instability waves are essen-

tially inviscid, we start from the Euler equations shown as follows

Dρ

Dt′
+ ρ∇ · u = 0, (2.2)

ρ
Du

Dt′
= −∇p, (2.3)

Ds

Dt′
= 0, (2.4)

where t′ denotes time, u = (u, v) the velocity, p the pressure, ρ the density, s the entropy,
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and D/Dt′ = ∂/∂t′ + u ·∇. Because the entropy increase across a weak shock is a high-

order small term (Kerschen & Cain 1995), the isentropic condition is used here.

To determine the solution, both kinematic and dynamic boundary conditions need to

be satisfied across the vortex sheet. The dynamic boundary conditions read

p+|y′=h′ = p−|y′=h′ , (2.5)

while the kinematic boundary condition requires

v+|y′=h′ =

(

∂h′

∂t′
+ u+|y′=h′

∂h′

∂x′

)

, (2.6)

v−|y′=h′ =

(

∂h′

∂t′
+ u−|y′=h′

∂h′

∂x′

)

, (2.7)

where (·)+ and (·)− represent the quantities outside and within the jet flow respectively,

and h′ denotes the displaced y′ of the vortex sheet.

Following Kerschen & Cain (1995), we use δ and ǫ to denote the strength of the shock

and instability waves, respectively. These two parameters are assumed to be of the small

magnitude representing small perturbation compared to the mean jet flow. Note that

although shock waves can be intense in strongly imperfectly-expanded jets, they could

also be infinitesimally weak when the wave angle approaches the Mach angle (Anderson

2017). In this model, we consider a slightly imperfectly expanded jet, in which case

the shock-associated perturbations can be relatively weak, thus a linear model may be

developed (Tam & Tanna 1982; Tam et al. 1985; Kerschen & Cain 1995). The velocity

field can be expanded using these two parameters as (Kerschen & Cain 1995)

u = u0 + δum + ǫuv + δ2um2 + ǫ2uv2 + δǫui + ... , (2.8)

where u0 is the mean velocity, um represents the linear perturbation due to shock waves,

and uv is the linear unsteady perturbation due to instability waves. For higher orders, the

δ2 term represents nonlinear steady modification of the shock waves and is independent

of time. As we are interested in sound generation, this term can be neglected. The

second-order term ǫ2 represents the nonlinear correction to the linear stability waves,

and we neglect it by only considering the leading-order contribution from the ǫ term.

The omission of this term follows immediately if 1 ≫ δ ≫ ǫ is assumed, which implies

ǫ2 is the highest-order term of the expansion. The δǫ term represents the interaction due

to shock and stability waves, as a result of which sound is generated. Physically, this

entails that the shock and instability waves that interact to produce sound in realistic

flows may be approximated by the linear shock and instability solutions to the base flow.

The pressure, density, and vortex sheet displacement have similar expansions, i.e.

p = p0 + δpm + ǫpv + δ2pm2 + ǫ2pv2 + δǫpi + ... , (2.9)

ρ = ρ0 + δρm + ǫρv + δ2ρm2 + ǫ2ρv2 + δǫρi + ... , (2.10)

h′ = h′
0 + δh′

m + ǫh′
v + δ2h′

m2 + ǫ2h′
v2 + δǫh′

i + ... . (2.11)
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The mean temperature across the jet flow is different, while the mean pressure p0

remains identical in both regions. If a perfect gas is assumed, then c0 =
√

γp0/ρ0

can be used to calculate the mean speed of sound inside and outside the jet, and it is

straightforward to show that ρ0−c
2
0− = ρ0+c

2
0+. We defineM− = U/c0− andM+ = U/c0+

to denote the mean Mach numbers inside and outside the jet, respectively. Substituting

all the expansions to the Euler equation and boundary conditions, and collecting the

terms O(δ), O(ǫ) and O(δǫ), we obtain the equations governing the shock, instability

waves and their interaction, respectively.

2.2. The shock model

The O(δ) terms in the governing equations representing the linear perturbation induced

by the shock wave satisfy

D0pm
Dt′

+ ρ0c
2
0∇ · um = 0, (2.12)

ρ0
D0um

Dt′
= −∇pm, (2.13)

where D0/Dt′ denotes ∂/∂t′ + u0 ·∇. These two equations can be combined to yield

∇
2pm −M2∂

2pm
∂x′2

= 0. (2.14)

Equation (2.14) reduces to the Laplace equation outside the jet, since the mean flow

velocity is zero there. Within the jet, by defining β =
√

M2
− − 1, we can rewrite (2.14)

to be
∂2pm−

∂y′2
− β2 ∂

2pm−

∂x′2
= 0. (2.15)

We see that the linear pressure field within the jet induced by weak shock waves

satisfies the wave equation. Such an equation can admit many solutions subject to

different boundary conditions; for illustration purposes, Kerschen & Cain (1995) used

a step function for his single planar vortex sheet. In order to have a much more realistic

shock cell structure, we use Pack’s model (Pack 1950) in this paper. Note that we use

the jet height D here, instead of the nozzle height, to nondimensionalize the streamwise

and cross-flow coordinates, i.e. x = x′/D, y = y′/D. The velocity potential perturbation

within the jet induced by the shock waves can be written as (Pack 1950; Tam 1972)

φ =
∑

j=1

Aj cos(βajy) sin(ajx), (2.16)

where j represents the jth mode of the shock wave. Two parameters Aj and aj in the

equation above are

Aj = (−1)j
4β

π2

U
(2j − 1)2

, (2.17)

aj =
(2j − 1)π

β
. (2.18)

The constant U in the above equation is defined by U = U1 − U. We see from (2.17)
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that the amplitude of this potential function decreases quickly as the mode number

increases. In light of the linearity of the model, it is convenient to consider each mode

separately. In the present study, we focus on the leading-order mode. Higher-order terms

can be easily included at a later stage should necessity arise. For the leading-order mode,

the shock wave is periodically distributed along the streamwise direction with a shock

spacing s = 2π/a1. In what follows, the subscripts in parameters A1 and a1 are omitted

for clarity.

The corresponding velocity, pressure, and the vortex sheet deflection at the boundary

of the jet flow are shown in Appendix A.

2.3. The instability waves

Similar to the derivation of the shock equations, the governing equations for the

instability waves can be obtained by collecting the O(ǫ) terms, i.e.

D0pv
Dt′

+ ρ0c
2
0∇ · uv = 0, (2.19)

ρ0
D0uv

Dt′
= −∇pv. (2.20)

Considering the O(ǫ) terms in the boundary conditions shown in (2.5), (2.6) and (2.7),

we see that the two matching conditions can be linearised to the dynamic and kinematic

conditions on y = ±D/2, i.e.

pv+ = pv−, (2.21)

vv+ =
∂h′

v

∂t′
, vv− =

∂h′
v

∂t′
+ U

∂h′
v

∂x′
, (2.22)

where h′
v denotes the disturbed height of the vortex sheets due to the instability waves.

Since the initial base flow is irrotational and inviscid both inside and outside of the vortex

sheet, the linear perturbation can be expressed as a velocity potential φv. The continuity

equation (2.19), and the momentum equation (2.20), can be combined to yield

∇
2φv −

1

c20

D2
0φv

Dt′2
= 0. (2.23)

Similarly the dynamic boundary condition reduces to

ρ0+
∂φv+

∂t′
= ρ0−

[

∂φv−

∂t′
+ U

∂φv−

∂x′

]

. (2.24)

For the kinematic boundary condition, the two equations shown in (2.22) can be combined

to yield
(

∂

∂t′
+ U

∂

∂x′

)

∂φv+

∂y′
=

∂2φv−

∂t′∂y′
. (2.25)

With temporal and spatial harmonic assumptions, the perturbations induced by the

instability waves have the form of ei(α
′x′−ω′t′), where the spatial wavenumber α′ is

complex and the eigenvalue with a negative imaginary part represents instability. We

use the velocity of the fully-expanded jet flow U to nondimensionalize other variables,
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for instance the nondimensional time, frequency and wavenumber are t = t′U/D, ω =

ω′D/U, α = Dα′, respectively.

Combining the governing equations and boundary conditions, and noticing that the

base flow outside the jet is 0, we find that the velocity potential can be expressed as

φ = UDei(αx−ωt) ×



















1
M2

+

e−m+y, y > 1
2

1
M2

−

ω
ω−α (k1e

m−y + k2e
−m−y), y 6 | 12 |

1
M2

+

k3e
m+y, y < − 1

2 ,

(2.26)

where m+ =
√

α2 − ω2M2
+, m− =

√

α2 −M2
−(ω − α)2. The branch cut is chosen such

that the real part of m+ is positive. k1, k2, k3 are undetermined coefficients. It can be

seen that both antisymmetric and symmetric modes can exist, corresponding to k3 = −1

and k3 = 1, respectively. Using the dynamic and kinematic boundary conditions, the

dispersion relations can be found to be

e2m− =
(ω2m−/M

2
− − (ω − α)2m+/M

2
+)

2

(ω2m−/M2
− + (ω − α)2m+/M2

+)
2
. (2.27)

For the symmetric mode, this reduces to

tanh(
m−

2
)

ω2m−

M2
−(ω − α)2

+
m+

M2
+

= 0, (2.28)

where the parameters attain the following values

k1 = k2 =
e−

1
2
m+

2cosh(12m−)
, k3 = 1. (2.29)

For the antisymmetric mode, the dispersion relationship reduces to

ω2m−

M2
−(ω − α)2

+ tanh(
m−

2
)
m+

M2
+

= 0, (2.30)

where the three parameters take the values of

k1 = −k2 =
e−

1
2
m+

2sinh(12m−)
, k3 = −1. (2.31)

The corresponding pressure, velocity, and the deflection of the jet boundary due to the

instability waves are shown in Appendix B. We can see that the deflection generated by

the instability wave at the upper and lower boundaries are symmetric and antisymmetric

for the symmetric and antisymmetric modes, respectively, as would be expected.

Experiments found that rectangular jets are capable of sustaining both symmetric

and antisymmetric oscillation modes (Suda et al. 1993; Kaji & Nishijima 1996), which

can be directly linked to the instability of the jet. In our analysis, both symmetric and

antisymmetric instability modes can be considered. But for jet flows from high-aspect-

ratio rectangular nozzles, the flapping mode is dominant (Edgington-Mitchell 2019)

and the problem can be approximated by a 2D theory. So in what follows only the

antisymmetric mode of instability waves is considered.
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2.4. The interaction between shock and instability waves

Having obtained the shock and instability waves, we are now in a position to consider

the O(δǫ) terms in the governing equations. When a perfect gas is assumed (ρ0c
2
0 = γp0),

the continuity and momentum equations can be expressed as

D0pi
Dt′

+ ρ0c
2
0∇ · ui = −[um ·∇pv + uv ·∇pm + γpm∇ · uv + γpv∇ · um], (2.32)

ρ0
D0ui

Dt′
+∇pi = −[ρ0(um ·∇uv + uv ·∇um) + ρm

D0uv

Dt′
+ ρv

D0um

Dt′
]. (2.33)

Substituting the momentum equations for the shock wave, i.e. (2.13), and the instability

wave, i.e. (2.20), into (2.33), we have

ρ0
D0ui

Dt′
+∇pi = −[ρ0∇(um · uv) +

1

ρ0c20
∇(pmpv)]. (2.34)

The interaction field is also irrotational, i.e. ui = ∇φi. Then (2.34) can be integrated to

obtain

pi = −ρ0
D0φi

Dt′
− ρ0um · uv +

1

ρ0c20
pmpv. (2.35)

Combining (2.32) and (2.35), and considering the momentum and continuity equations

for the O(α) and O(ǫ) terms, we find that φi satisfies the following inhomogeneous wave

equation

∇
2φi−

1

c20

D2
0φi

Dt′2
=

−1

ρ0c20
[2(um ·∇pv+uv ·∇pm)+(γ−1)(pm∇ ·uv+pv∇ ·um)]. (2.36)

Next we consider the continuity of the pressure across the vortex sheet. Similar to

Kerschen & Cain (1995), on the two boundaries y′ = 1/2D and y′ = −1/2D, the dynamic

boundary condition reduces to

pi+ + h′
m

∂pv+
∂y′

= pi− + h′
m

∂pv−
∂y′

+ h′
v

∂pm−

∂y′
, (2.37)

while the kinematic boundary condition requires

vi+ +
∂vv+
∂y′

h′
m =

∂h′
i

∂t′
+ uv+

∂h′
m

∂x′
, (2.38)

vi− +
∂vv−
∂y′

h′
m +

∂vm−

∂y′
h′
v =

∂h′
i

∂t′
+ U

∂h′
i

∂x′
+ uv−

∂h′
m

∂x′
+ um−

∂h′
v

∂x′
. (2.39)

Note that outside the jet flow, there is no perturbation due to shock waves, therefore

the right-hand side of (2.36) vanishes. This equation degenerates to a homogeneous wave

equation. Using the same U and D to nondimensionalize the velocity potential, we obtain

φi+ = 2UDg+e
−iωt, (2.40)

φi− = 2UDg−e
−iωt, (2.41)

where g± are the nondimensionalized potential functions. Outside the jet flow, the base
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flow is uniformly 0, and (2.36) reduces to

∂2g+
∂x2

+
∂2g+
∂y2

+ ω2M2
+g+ = 0. (2.42)

Inside the jet flow, g− satisfies

∂2g−
∂x2

+
∂2g−
∂y2

+M2
−(ω + i

∂

∂x
)2g− = 2k1e

iαxA

U

[

sinh(ζ1y)(B1 cos(ax) +B2 sin(ax))

+ sinh(ζ2y)(B3 cos(ax) +B4 sin(ax)

]

, (2.43)

where

ζ1 = m− + iaβ,

ζ2 = m− − iaβ, (2.44)

B1 =
aω

2

(

α+ i
aβm−

ω − α
− γ − 1

2
(ω − α)M2

−

)

,

B2 =
aω

2

(

m−β − i
αa

ω − α
+

γ − 1

2
iaM2

−

)

,

B3 =
aω

2

(

α− i
aβm−

ω − α
− γ − 1

2
(ω − α)M2

−

)

,

B4 =
aω

2

(

−m−β − i
αa

ω − α
+

γ − 1

2
iaM2

−

)

. (2.45)

Besides, the two boundary conditions can be reorganized as

ωg+ − M2
−

M2
+

(ω + i
∂

∂x
)g− = ± Aβ

2UM2
+

sin(
1

2
aβ) cos(ax)

[

ω
(

2k1m− cosh(
1

2
m−)

± m+e
∓ 1

2
m+

)

− e−
1
2
m+

ω
m+

M2
−

M2
+

a2
]

eiαx (2.46)

and

(1 +
i

ω

∂

∂x
)
∂g+
∂y

− ∂g−
∂y

=
A

2U

[

iaβ sin(ax)
[

b1 sin(±
1

2
aβ) + cβ cos(

1

2
aβ)

]

+ cos(ax)
[

b2 sin(±
1

2
aβ)− cα cos(

1

2
aβ)

]

]

eiαx, (2.47)

where the upper and lower of signs of ± and ∓ correspond to the matching conditions

on y = 1/2 and y = −1/2, respectively, and

b1 = ±2αk1 sinh(
1
2m−)

M2
+ω

[(α− ω) +
m2

+

α
]± α

M2
−

ω

ω − α
e∓

1
2
m+ , (2.48)

b2 = ±2βk1 sinh(
1
2m−)

M2
+ω

[(α− ω)m2
+ + αa2]±m2

−

β

M2
−

ω

ω − α
e∓

1
2
m+ , (2.49)

c =
a

ω

m+

M2
+

e−
1
2
m+ . (2.50)

To obtain the solution to these equations, Fourier transform is used. The Fourier
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source

2 /a

sound field

Figure 2. The schematic of an effective source term located within one single shock cell. The

total sound field is equivalent to a linear superimposition of the results from a number of shock

cells.

transforms G±(λ, y) are defined as

G±(λ, y) =

∫ +∞

−∞

g±(x, y)e
iλxdx, (2.51)

where λ is the wavenumber in the streamwise direction. Outside the jet flow, it is easy

to find that G satisfies

G+(λ, y) =







D1(λ)e
−γ+y, y > 1/2

D4(λ)e
γ+y, y < −1/2,

(2.52)

where

γ+(λ) =
√

λ2 − ω2M2
+, (2.53)

and D1 and D4 are two undetermined coefficients related to λ.

When Fourier transform is used to the source term of (2.43), we can simplify the

problem by noting the periodicity of the function cos(ax) and sin(ax). For example,
∫ ∞

0

sin(ax)ei(λ+α)xdx =

∞
∑

j=0

∫ 2(j+1)π/a

2jπ/a

sin(ax)ei(λ+α)xdx

=





∞
∑

j=0

ei(α+λ)2jπ/a





1

2

(

1

α+ λ+ a
− 1

α+ λ− a

)

(−ei(α+λ) 2π
a + 1). (2.54)

Clearly, convergence problem arises when j → +∞ since α has a negative imaginary part.

However, this is a difficulty resulting from linearization, not inherent difficulties in the

flow physics and its modelling. As mentioned earlier, the interaction between shock and

instability waves occurs when the instability waves grow to be of sufficient amplitude,

at which place the nonlinear/linear saturation or even decay begins to take place.

Considering that both the instability and shock waves start to decay further downstream

of the jet (Cohen & Wygnanski 1987; Jordan & Colonius 2013), the effective interaction

only takes place within a limited interval spanning several shock cells (Suda et al. 1993;

Malla & Gutmark 2017; Gao & Li 2010). In other words, the summation only involves a

finite number of terms and therefore the convergence problem does not occur in realistic

jets. In light of this, it is reasonable to only focus on a limited number of shock cells in this
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paper, e.g. from the third to the fifth according to previous studies (Norum 1983; Panda

1999; Tam & Parrish 2014; Mercier et al. 2017). Furthermore, note that the right hand

sides of (2.46), (2.47), and (2.43) all have the common factor
(
∑

ei(α+λ)2jπ/a
)

after the

Fourier transform. Hence they can be collected and accounted for later due to linearity of

the equation and the two boundary conditions. This means that we only need to consider

the interaction within one shock cell, as shown in figure 2, and the total interaction field

would be a simple linear combination from a number of shock cells. In this way, the

effective integration interval when Fourier transform is applied to both the governing

equation and boundary conditions is limited to be within one shock cell. Physically, this

corresponds to the effective sound generated by the interaction between the instability

waves and one single shock cell, similar to Powell’s idea of treating the effective sound

as that of monopoles.

Note although we limit the integration interval to be within one shock cell, we do

not imply that such an effective source is physically localized. The source term on the

right side of (2.36) has a periodic nature by construction, but the bounds of integration

may be across one or several shock cells due to the linearity of (2.36). This is equivalent

to decomposing the problem into several sub-problems, each of which has an effective

noise source within one shock cell. The overall sound is a linear combination of the

solutions to these sub-problems. In the rest of this paper, we will focus on examining the

characteristics of such an effective sound source first and then discuss and compare the

total sound from a number of these sources with experiments and numerical simulations.

Let us define

Is(λ) =
∫ 2π

a

0

sin(ax)ei(λ+α)xdx =
1

2

( 1

α+ λ+ a
− 1

α+ λ− a

)(

− ei(α+λ) 2π
a + 1

)

, (2.55)

Ic(λ) =
∫ 2π

a

0

cos(ax)ei(λ+α)xdx =
i

2

( 1

α+ λ+ a
+

1

α+ λ− a

)(

− ei(α+λ) 2π
a + 1

)

, (2.56)

with which the inhomogeneous equation can be written as

∂2G−

∂y2
− γ2

−G− = 2k1
A

U

[

sinh(ζ1y)(B1Ic +B2Is) + sinh(ζ2y)(B3Ic +B4Is)
]

, (2.57)

where

γ− =
√

λ2 −M2
−(ω + λ)2. (2.58)

Equation (2.58) is equivalent to

γ− = −iβ
√

(λ −M1)(λ −M2), (2.59)

where

M1 =
−M−ω

M− + 1
, M2 =

−M−ω

M− − 1
. (2.60)

The branch cuts passing λ = M1 and λ = M2 extend to the lower half plane, as illustrated

in figure 3. The function G−(λ, y) can be divided into two parts, a particular solution,



Sound due to shock and instability waves interaction 15

Gp(λ, y), and a complementary solution, Gc(λ, y), i.e.

G−(λ, y) = Gp(λ, y) +Gc(λ, y). (2.61)

The particular solution can be calculated analytically, i.e.

Gp(λ, y) = 2k1
A

U

[

sinh(ζ1y)

ζ21 − γ2
−

(B1Ic +B2Is) +
sinh(ζ2y)

ζ22 − γ2
−

(B3Ic +B4Is)
]

,

and the complementary solution can be found to be

Gc(λ, y) = D2(λ)e
γ−y +D3(λ)e

−γ−y, (2.62)

where D2 and D3 are two undetermined coefficients.

Applying the Fourier transform to the two boundary conditions, we can solve the

undetermined coefficients. For the antisymmetric mode, we obtain

D1(λ) =
Ae

1
2
γ+

2UηM2
+

[

γ− coth(
γ−
2
)Ic sin(±

1

2
aβ)β

[

ω
(

2k1m− cosh(
1

2
m−)±m+e

∓ 1
2
m+

)

− 1

ω
m+

M2
−

M2
+

a2e−
1
2
m+

]

+M2
−(ω + λ)

(

γ− coth(
γ−
2
)
2U

A
Gp(±1

2
)

− 2U

A
Gp′(±1

2
)− iaβIs[b1 sin(±

1

2
aβ) + cβ cos(

1

2
aβ)]

− Ic[b2 sin(±
1

2
aβ)− cα cos(

1

2
aβ)]

)]

,

(2.63)

D2(λ) = − A

4ηU

[

ω + λ

ω
Icγ+β sin(±1

2
aβ)

1

M2
+

[

ω
(

2k1m− cosh(
1

2
m−)±m+e

∓ 1
2
m+

)

− 1

ω
m+

M2
−

M2
+

a2e−
1
2
m+

]

+
M2

−

M2
+

(ω + λ)2

ω
γ+

2U

A
Gp(±1

2
)

+
2U

A
Gp′(±1

2
) + iωaβIs[b1 sin(±

1

2
aβ) + cβ cos(

1

2
aβ)]

+ ωIc[b2 sin(±
1

2
aβ)− cα cos(

1

2
aβ)]

]

,

(2.64)

and D4(λ) = −D1(λ), D3(λ) = −D2(λ), where η(λ) is

η(λ) = ωcoth(
1

2
γ−)γ− +

1

ω
(ω + λ)2γ+

M2
−

M2
+

. (2.65)

It is straightforward to verify that λ = −α is a simple zero for η(λ). In fact, η(−α) = 0

corresponds to the dispersion relation (2.30). Besides, λ = −α is a simple zero for Is(λ)
and a second-order zero for Ic(λ), so λ = −α is not a pole for D1(λ) and D2(λ). It is
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Figure 3. The branch points, branch cuts and integral path in complex λ plane. P1 and P2 are

the deformed integral paths when the saddle point approaches to the branch points −ωM+ and

ωM+, respectively.

found that D1(λ) and D2(λ) have four poles, which are

Z1,2 =
ωM2

− ±
√

M2
−ω

2 + (1−M2
−)ζ

2
1

1−M2
−

, (2.66)

Z3,4 =
ωM2

− ±
√

M2
−ω

2 + (1−M2
−)ζ

2
2

1−M2
−

. (2.67)

The following inverse Fourier transform

g+(x, y) =
1

2π

∫ +∞

−∞

D1(λ)e
−(iλx+γ+y)dλ (2.68)

yields g+. The integration path is near the real axis of λ, as illustrated in figure 3. The

integration path is indented to pass above the poles at λ = Z1,4, as illustrated in figure 3,

in accordance with the causality argument (Briggs 1964). Because the real part of γ+

should be positive when |λ| → ∞ along the integration path, the branch cuts of γ+

passing the branch points λ = ±ωM+ are chosen to extend to the upper and lower half

plane, respectively, as shown in figure 3. The branch points of γ−, i.e. M1 and M2, are

on the negative real λ axis. The branch cuts are chosen to extend down to the lower

half plane so as not to cross the integration path. Using the steepest descent method,

and noting that the saddle point is located at λ = −M+ωcosθ, where θ = arctan(y/x)

representing the observer angle, we can express g+ as a function of radial distance r and

θ in the far field (r ≫ 1), i.e.

g+(r, θ) =

√

M+ω√
2π

D1(−M+ωcosθ)sinθ
eiω(M+r−π/4)

√
r

+O(r−3/2), (2.69)

and with (2.35) and (2.40), the corresponding pressure perturbation (nondimensionalized
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by
√

2/πρ0+U
2) can be expressed as

p+(r, θ) = i
√

M+ω
3
2D1(−M+ωcosθ)sinθ

eiω(M+r−t−π/4)

√
r

+O(r−3/2). (2.70)

Note that the saddle point moves between −ωM+ and ωM+ as θ changes from 0 to π,

and the integral path is forbidden to pass through the branch cut. So when θ = π and 0,

the corresponding integral path is deformed along the branch cut and wraps the branch

point as shown by P1 and P2 in figure 3, respectively. It is similar when the steepest

decent path passes through the branch cut at M1 and M2, in which case the integral

path needs to be adjusted to avoid the branch cut. Note when the poles cross the steepest

decent path, care must be taken regarding the residue contribution.

As can be seen from equation (2.69), when the observer angle θ = π, the potential

function g+(r, θ) reduces to a high order term O(r−3/2) if |D1(−ωM+ cos θ)| is bounded.
This implies that sound waves propagating in this direction decays rapidly and nearly

vanishes in the far field as r → ∞. This leads to an important feature of the sound

directivity that will become clear in the rest of this paper.

3. Results and discussion

The sound field due to the interaction between shock and instability waves is shown

in this section. In the linear stability analysis, the spatial wavenumber α is the central

parameter determining the characteristics of the instability waves. The dispersion relation

calculated from (2.30) is shown in figure 4. The antisymmetric mode is considered. We

see that both the wavenumber and growth rates increase as ω increases. These are well-

established results in the linear stability analysis. Due to a negative imaginary part, the

instability waves grow exponentially downstream the jet flow, and subsequently interact

with shock cell structures.

In what follows, we first examine the screech frequency prediction using the present

model. Sound propagating at the observer angle θ = 150◦ is used to verify the far-field

approximation before the directivity patterns of the fundamental tone and its harmonics

are shown. Finally, we examine the near-field pressure fluctuation and discuss the noise

generation mechanism.

3.1. The screech frequency

Powell (1953b) proposed a model to predict the screech frequency by assuming a

constructive interference in the upstream direction θ = 180◦. Following Powell’s idea,

the screech frequency and its harmonics can be calculated using the present model. Note

similar frequency predictions have been investigated in earlier studies, nevertheless, it is

included here as a validation of the model. The shock cell spacing s satisfies

s/D =
2π

a
= 2

√

M2
− − 1. (3.1)



18 Binhong Li and Benshuai Lyu

100

log
10

( )

10-1

100

101

lo
g

10
|

i|/l
og

10
r

|
i
|

r

Figure 4. The real and imaginary parts of the solution of the spatial wavenumber α calculated

from the dispersion relation (2.30). The antisymmetric mode is considered. Note that the

imaginary part of the wavenumber α is negative, and its absolute value is plotted instead.

Tam (1986) showed that in the jet flow from a rectangular nozzle, the shock cell spacing

satisfied

s/D =
2
√

M2
− − 1

√

1 +

(

D

b

)2
, (3.2)

where b is the width of the fully-expanded jet flow. When the rectangular jet is of high

aspect ratio (D/b ≪ 1), we can see that (3.2) reduces to (3.1). Note that (3.1) may

not be able to predict the shock spacing accurately when the magnitude of overexpan-

sion/underexpansion increases (Gao & Li 2009), while a correct representation of shock

structures plays a dominant role in predicting the screech frequency, especially in circular

jets (Nogueira et al. 2022a). Nevertheless, in this planar model, the jet is assumed to be

slightly imperfectly-expanded, and previous studies (Tam 1986) showed good agreement

between the prediction and the experimental data. Therefore, we choose (3.1) to predict

the shock spacing.

The convection velocity of instability waves is widely believed to be proportional to

the velocity of the fully-expanded jet flow, i.e.

Uc = κU−, (3.3)

where κ is usually taken to be 0.7. Equations (1.3), (3.1), and (3.3) can be combined to

yield the nondimensionalized angular frequency of the sound wave

ω =
amκ

Mc + 1
, (3.4)

where m = 1, 2, 3, 4... correspond to the fundamental frequency, the first, second and

higher harmonics, respectively. Considering that Mc = Uc/a∞, where a∞ is the speed of
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Figure 5. Comparison of the fundamental screech frequency between Powell’s

experiment (Powell 1953b) and the model’s prediction.

sound in the free stream. For a cold jet, Mc can be calculated by

Mc =
κM−

√

1 + γ−1
2 M2

−

. (3.5)

With (3.5), ω can be readily calculated via (3.4). This formula is consistent with

that derived by Tam (1986). A comparison between the measured fundamental screech

frequency by Powell (1953b) and that predicted by (3.4) is shown in figure 5. As can

be seen, good agreement is achieved. Equations (3.4) and (3.5) show that when the

jet operating condition is known, the screech frequency can be readily calculated. The

operating conditions and frequencies calculated in this way, as shown in table 1, will be

used in following sections.

Note that this paper does not attempt to model the entire feedback loop, and the

reason we include a frequency prediction is mainly to validate the model. Thus, although

the feedback theory proposed by Powell is used, it is only used to predict the frequency

using (3.4). Our focus in this paper is to model the interaction between the shock and

instablity waves. It is worth noting that a new feedback mechanism for circular jets has

been proposed in a number of recent papers (Gojon et al. 2018; Edgington-Mitchell et al.

2018; Li et al. 2020; Mancinelli et al. 2021). The present paper, however, focuses on a 2D

jet, and it is not yet clear what role the guided jet modes play in this case. Besides,

even for circular jets, it is known that the convection velocity of the upstream-travelling

jet guided mode is very close to the speed of sound. Therefore, it can be expected little

change in the frequency prediction would occur even if the guided jet mode is taken as

the closure mechanism.

3.2. Directivity of the sound field

The distinct directivity pattern of jet screech is perhaps one of its most important

features and has been well-reported in various experiments. In this section, we aim to
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M− ω1 ω2 ω3

1.5 1.05 2.10 3.15

1.3 1.48 2.86 4.45

1.2 1.91 3.81 5.73

Table 1. The operating conditions and calculated frequencies of the screech tones, where ω1

denotes the angular frequency of the fundamental tone, ω2 its first harmonic, and ω3 the second

harmonic.
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Figure 6. Comparison of the SPL from the far-field approximation and that from the numerical

integration (θ = 150◦). The Mach number of the fully-expanded jet is 1.5. The origin r = 0

represents the beginning of the first shock cell, and r is the nondimensionalized radial distance.

predict the noise directivity using the model developed in section 2. As mentioned in

section 1, this paper concerns the acoustic emission due to the interaction between shock

and instability waves, and therefore does not consider the entire feedback process of

screech. However, the existence of the feedback would not alter the fact that the noise

is generated due to the shock-instability interaction. Therefore, provided the screech

frequency is specified, the present model can be used to compare with the screech

directivity.

Before used to study the directivity of the resulting sound, equation (2.70) is verified

by numerically integrating (2.68) at θ = 150◦. The comparison between the prediction

using (2.70) and (2.68) is shown in figure 6. The SPL is defined to be

SPL = 10 log10
|p+|2
|pref |2

, (3.6)

where the reference pressure pref = 2 × 10−5. We see that good agreement is achieved

when r is beyond 5, where the difference between two methods is within 1 dB. When

r > 20, the difference reduces to 0.2 dB. Consequently r = 5, in which case kr ≈ 7.9, may

be used to approximately separate the acoustic near and far field (Arndt et al. 1997).
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Whether the sound source of jet screech is spatially localized or distributed along the

jet flow is still open to debate. As mentioned above, Powell proposed the monopole array

theory to predict the directivity patterns. Many other researchers (Kaji & Nishijima

1996; Raman 1997; Malla & Gutmark 2017) also found that the fundamental screech

tone emitted from several shock cells downstream the jet flow. However, other re-

searchers (Walker & Thomas 1997; Mercier et al. 2017) observed that the screech was

produced from a particular shock cell, e.g. the third or fourth one. In addition, “shock-

clapping” (Suda et al. 1993) and “shock leakage” (Suzuki & Lele 2003) were observed

at the third and fourth shock cells downstream the jet, which were suggested to be

the source of screech, particularly for higher harmonics (Semlitsch et al. 2020). This

suggests that the number of shock cells that need to be included is not clear. However,

it would be interesting to compare and contrast the noise directivity patterns due to the

interaction between the instability waves and various numbers of shock cells. Therefore,

in what follows we will examine the directivity patterns due to the interaction between

the instability wave and a single shock cell, and then discuss that from several shock

cells.

It is known that in realistic jets the instability waves exhibit a characteristic structure

of wave packets (Lele 2005; Jordan & Colonius 2013; Wong et al. 2019). The amplitude of

the instability waves varies slowly within one wavelength (Suzuki & Colonius 2006), while

the whole wave packet shows a Gaussian envelope (Freund 2011), or more precisely an

exponentially-modified Gaussian envelope as demonstrated by a recent work (Maia et al.

2019). We see that the local growth rate within a wavelength is varying, but the effects

of the local growth rate on the sound characteristics are not clear across the wave packet.

In this paper, we will also examine the effects of the local growth rate by showing results

with various values of αi.

3.2.1. Directivity pattern of sound due to one-cell interaction

When the fully-expanded Mach number is given, the directivity patterns of the fun-

damental tone and its harmonics can be calculated from (2.70). The operating condition

is shown in table 1. Note that the wavenumber is obtained from (2.30), as we consider

the antisymmetric mode. The directivity patterns of the fundamental tone and its first

two harmonics under three different operating conditions are shown in figure 7. The SPL

is defined by (3.6). Labels (1), (2), (3) represent the results for the fully-expanded jet

Mach number of 1.5, 1.3, and 1.2, respectively. Columns (a), (b), (c) are the results

of the fundamental tone, the first and second harmonics, respectively. From figure 7,

it is clear that the effective directivity of the fundamental tone due to a single shock

cell is not that of a monopole. Instead, it consists of two lobes. One primary lobe

radiates upstream, while the other radiates downstreamwith a weaker intensity. Although

this represents the effective directivity due to one shock-cell interaction, we see that it

possesses some inherent directivity that resembles the total sound field measured in
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Figure 7. The directivity of sound in the far field obtained by (2.70). r is fixed to be 1. Labels

(1), (2), (3) represent the results for a fully-expanded jet Mach number of 1.5, 1.3, and 1.2,

respectively. Columns (a), (b), (c) are the results of the fundamental tone, the first and second

harmonics, respectively. The antisymmetric mode of instability waves is taken, and the imaginary

part of wavenumber αi 6= 0. In addition, U in (2.17) is taken to be 1.

experiments. For example, the effective directivity of the fundamental tones accords

with both numerical (Berland et al. 2007) and experimental (Walker & Thomas 1997;

Malla & Gutmark 2017) results for rectangular jets of high aspect ratios, where both an

upstream lobe and a downstream lobe of similar intensities appear. However, a precise

match of every lobe position may not be achieved; this is expected because the prediction

is only from one shock-cell interaction, whereas the numerical and experimental results

are from the entire screeching jet. Moreover, in all three cases, the fundamental tone

is reinforced at the upstream direction, but drops quickly as θ approaches 180◦. In

Kerschen’s original paper (Kerschen & Cain 1995), the directivity pattern reaches its

maximum at 48◦ with only one lobe in the downstream direction. Little sound radiates

in the upstream direction. Our present model shows that when a two-dimensional vortex

sheet and a more realistic shock structure are considered, the screech directivity from a

single shock cell has a major radiation lobe in the upstream direction. This result shows

a better qualitative agreement with experiments. It is also interesting to note that the

maximal radiation angles shown in figure 7 appear to depend on the fully-expanded jet

Mach number. A similar tendency was also reported in earlier experiments for round

jets (Powell et al. 1992).

Another important result is that there is a large lobe perpendicular to the jet flow for
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the first harmonic in all three conditions, which again resembles the total noise directivity

measured in experiments (Powell 1953b; Walker & Thomas 1997; Semlitsch et al. 2020).

Note that the peak radiation angle was reported to be not exactly at 90◦, but slightly

towards the downstream direction (Berland et al. 2007; Kandula 2008; Semlitsch et al.

2020), which is similar to the prediction by the present model. For the second harmonic, it

was experimentally observed that the effective directivity pattern showed two lobes, one

directed slightly upstream, and one downstream (Malla & Gutmark 2017); this feature is

consistent with the prediction. In addition, we find that in a recent experiment conducted

by Semlitsch et al. (2020), the main radiation angle for the second harmonic is between

40◦ and 110◦, while little radiation appeared around 90◦. We see from figure 7 that this

is also reflected in the prediction.

From figure 7, It is straightforward to see that the effective noise directivity due to

the interaction between the instability waves and one shock cell is not of the monopole

type, but shows an intrinsic shape that is close to that of the overall screech directivity.

This shows that the unique directivity of jet screech is not caused by pure interference

between an array of monopoles as assumed by Powell. Therefore, to properly model and

understand the directivity of screech, one has to use quantitative models such as the one

developed in this paper. However, it is worth noting that this model does not imply that

the screech source is localized as a “single” source, what we show is just the effective

noise directivity due to interactions between the instability waves and a single shock cell.

To examine the effects of the local growth rate of the instability waves on sound

generation, the result obtained using (2.70) with only the real part of α considered is

shown in figure 8. The SPL is similarly defined by (3.6). Only the fundamental tone

and its first harmonic are presented to compare with those reported by Powell (Powell

1953a). Considering that the original directivity results reported by Powell (1953a) were

presented in the form of schlieren photographs and were therefore not suitable for a

direct comparison, only a qualitative comparison is presented. As shown in figure 8,

the fundamental tones in all three cases are only reinforced in the upstream direction,

while in Powell’s experiment, sound waves at the fundamental frequency can only be

observed propagating upstream, as shown in figure 4 of the original paper (Powell 1953a).

The model prediction is in agreement with the experimental data. In addition, a quick

decay also occurs when the observer angle approaches 180◦, which is similar to the case

when the imaginary part of α is not zero. While for the first harmonic, a large lobe

perpendicular to the jet flow is predicted by our model. In Powell’s experiment, when a

reflector was placed, a downstream propagating sound wave (as shown in figure 5 of the

original paper (Powell 1953a)) twice of the fundamental frequency emerged. This implied

that there was a strong beaming to the side of the jet flow, which is in good qualitative

agreement with the prediction.

To further investigate the effects of the local growth rate of the instability waves on

directivity patterns, we change the imaginary part of α to 2/3 of its original value. The
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resulting directivity patterns are shown in figure 9. As can be seen, the fundamental

tones in all three cases radiate primarily to the upstream direction, while small lobes

appear downstream of the jet flow. Compared with the results shown in figure 7 these

lobes are both thinner and weaker, whereas in the case of αi = 0 there are no observable

lobes downstream of the jet flow, as illustrated in figure 8(a). For the first harmonic, a

large lobe appears perpendicular to the jet flow. Compared with the results shown in

figure 7, the directivity patterns seem to shrink and move closer to 90◦ to the jet. In

particular, two small lobes appearing in figure 7(3b) appear to collapse to a single wide

lobe, as shown in figure 9(3b).

The directivity pattern when a positive imaginary part of α is used can be similarly

studied. It can be shown that little change occurs when α is replaced by α∗ (α∗
i =

−αi). So we will omit a repetitive discussion for brevity. Figures 7, 8, and 9 show that

the directivity pattern depends on the local growth rate of the instability wave, and a

change in the imaginary part of α would lead to a corresponding change in the resulting

directivity pattern. As mentioned at the beginning of section 3.2, it is not clear exactly

where the interaction between instability and shock waves occurs. The amplitude of

instability waves may have experienced a growth, a saturation, or even decay before

reaching the point of interaction. Comparing figures 7, 8, and 9, we see that the noise

directivity is very sensitive to the local growth rate, and this may be used to explain

the discrepancies observed across different experiments. For example, Powell’s original

results showed a clearly dominant radiation only in the upstream direction and a strong

90◦ radiation at the first harmonic. This could be explained well if the local instability

waves experience a saturation. On the other hand, Walker & Thomas (1997), Raman

(1999), and Wu et al. (2020) showed that two lobes could be observed at the fundamental

frequency, and a relatively weak radiation at 90◦ for the first harmonic. This may be

explained if the instability waves are in a growth or decay stage at the effective point of

interaction.

3.2.2. Directivity patterns from several shock cells

As mentioned at the beginning of section 3.2, some researchers report that screech

appears to originate from several shock cells downstream the jet flow, for example, from

the second to the fourth shock cell (Suda et al. 1993; Malla & Gutmark 2017). Since

our model can include multiple shock structures, we can study and compare the sound

field produced by the interaction between instability waves and several shock cells with

simulations and experiments. Note that to precisely predict the screech amplitude, it

is likely that every stage of the feedback loop needs to be considered (Nogueira et al.

2022b) and the nonlinearity that is inevitable within the loop needs to be included.

However, in this paper, we only study the shock-instability interaction and use a linear

model (U=1 in (2.17)). Therefore, the prediction would not be able to match the data

in terms of the absolute amplitude. However, we can still plot the predictions and the
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Figure 8. The directivity of sound in the far field obtained by (2.70). r is fixed to be 1. Labels

(1), (2), (3) represent the results for a fully-expanded jet Mach number of 1.5, 1.3 and 1.2,

respectively. Columns (a), (b) are the results of the fundamental tone and the first harmonic,

respectively. The antisymmetric mode of instability waves is taken, and the imaginary part of

wavenumber αi = 0. In addition, U in (2.17) is taken to be 1.

numerical or experimental data in one figure and focus instead on comparing the shapes

of the directivity pattern. The SPL of the model prediction is again defined by (3.6),

but rescaled according to the experimental or numerical data. The predictions of the

monopole array theory are also included for comparison.

The results are first compared with the study by Wu et al. (2020), where LES sim-

ulations were conducted and well validated against the experimental data reported

by Alkislar et al. (2003) and Valentich et al. (2016). In both the experiment and the

numerical simulation, a rectangular nozzle with an aspect ratio of 4:1 was used. The

designed Mach number of the nozzle was 1.44, while the Mach number of the fully-

expanded jet flow was 1.69. It was stated by Wu et al. (2020) that the measured directiv-

ity patterns resulted from the interference among spatially distributed sources. Therefore,

multiple shock cells are included in our model to facilitate a comparison. Considering that

the amplitude of instability waves shows a Gaussian (Freund 2011), or more precisely

exponentially-modified Gaussian (Maia et al. 2019) intensity distribution downstream of

the jet flow, in this paper we use three shock cells, the interaction between which and the

instability waves leads to different effective source strengths. The middle cell is chosen to

have the maximal strength. In front of the middle cell, the instability waves still grow and
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Figure 9. The directivity of sound in the far field obtained by (2.70). r is fixed to be 1. Labels

(1), (2), (3) represent the results for a fully-expanded jet Mach number of 1.5, 1.3 and 1.2,

respectively. Columns (a), (b) are the results of the fundamental tone and the first harmonic,

respectively. The antisymmetric mode of instability waves is taken, and the imaginary part of

wavenumber αi changes to 2/3 of the original value. In addition, U in (2.17) is taken to be 1.

have not reached the maximum intensity, while after that the instability waves begin to

decay but are still of sufficient intensity to generate sound. Thus, the relative strengths

of the three interactions are assumed to be 0.45, 1, 0.7, respectively. Similar assumptions

have been also made by Norum (1983) and Berland et al. (2007). It was known that

the effect of varying source strengths on the directivity of the fundamental and the first

harmonic was unimportant with regard to the principal lobe, and was appreciable only

in the secondary or minor lobes (Kandula 2008). In light of linearity, in what follows we

first calculate the sound by one shock cell using our model, and then combine the other

two with a spatial phase difference ei(λ0+real(α))2π/a, where λ0 = −ωM+ cos θ.

The result is shown in figure 10, where columns (a) and (b) represent directivity

patterns of the fundamental tone and the first harmonic, respectively. As can be seen,

for the directivity pattern of the fundamental tone, the numerical data shows two lobes.

The major lobe points to the upstream direction, while the other peaks at around 30◦

with a slightly weaker intensity. Note that the radiation intensity seems to decrease

as the observer angle approaches 0◦. The results from the monopole array theory also

show two lobes, which are of equal intensity and peak at 180◦ and 0◦, respectively.
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Figure 10. The comparison between the numerical results (Wu et al. 2020), the present model,

and the monopole array theory (Powell 1953a). The Mach number of the fully-expanded jet flow

is 1.69. The red solid line denotes the model prediction, the red line with markers the numerical

data, and the black dashed line represents the prediction of the monopole array theory. Columns

(a) and (b) represent the fundamental tone and its first harmonic, respectively.
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Figure 11. The comparison between the experimental data (Ponton et al. 1986), the present

model, and the monopole array theory (Powell 1953a). The fully-expanded Mach number for

(a) and (b) is 1.5 and 1.6, respectively, while the designed Mach number of the nozzle is 1.35.

The red solid line denotes the model prediction, the orange line with markers the experimental

results, and the black dashed line represents the prediction of the monopole array theory.

The weaker intensity of the downstream lobe appears not captured in the model. In

addition, as θ approaches 0◦, the monopole array theory predicts an increasingly large

noise radiation, which contradicts the numerical data. On the other hand, we see that the

present model predicts a similar major lobe in the upstream direction, and a weaker lobe

in the downstream direction. The relative intensity and positions of the two lobes agree

better with the numerical data than the monopole array theory. Moreover, the predicted

acoustic radiation decreases quickly as the observer angle approaches 0◦, which is in good

agreement with the numerical data. Note however the maximum radiation angle of the

downstream lobe appears at around 40◦, slightly different from the numerical data. But

considering the many assumptions made in the model, such deviation may be deemed

acceptable.

For the first harmonic, the numerical results exhibit three lobes. Two dominant lobes
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peak at θ = 30◦ and θ = 83◦, respectively, and one secondary lobe points to 155◦.

It is evident that a quick decrease occurs as the observer angle approaches 180◦ and

0◦, respectively. The results obtained by the monopole array theory also show three

lobes, which are of the same intensity and peak at 180◦, 88◦, and 0◦, respectively.

The corresponding errors compared with the numerical data are +25◦, +5◦, and −30◦,

respectively. Moreover, the monopole array theory predicts monotonously increasing

acoustic radiations as the observer angle approaches 180◦ or 0◦, which is not able to

match the numerical data. For the present model prediction, a narrow lobe peaks at

around 84◦ with a dominant intensity, and two weaker lobes appear at θ = 31◦ and

θ = 135◦, respectively. The corresponding differences compared with the numerical data

are +1◦, +1◦, and −20◦, respectively, which is in more satisfactory agreement with the

numerical results than those predicted by the monopole array theory. In addition, the

rapid decay as the observer angle approaches 180◦ and 0◦ can be predicted well by this

model. Note however the present model cannot correctly predict the relative amplitude of

the upstream and downstream lobes. The reason is not yet clear. In summary, although

both models are not capable of predicting the screech amplitude, the present model shows

a more satisfactory agreement with the numerical data in terms of the peak angle. In

addition, unlike the monopole array theory, it can capture the rapid decay of the noise

intensity as observer angles approach 0◦ and 180◦.

The results obtained by the present model are subsequently compared with Ponton et al.

(1986), where a series of experiments were conducted at the NASA Langley Research

Center. Several microphones were positioned on a circular arc from θ = 30◦ to 135◦ at

an increment of 15◦. The aspect ratio and the designed Mach number of the rectangular

nozzle were 3.7 and 1.35, respectively. Two sets of experimental data are chosen for

comparison, of which the corresponding fully-expanded Mach numbers are 1.5 and 1.6,

respectively. Note that the available data only spans the observer angle between 30◦ and

135◦ at an increment of 15◦. It is known that very weak noise is radiated in this range,

and the peak radiation angles are likely to fall outside this range at the fundamental

frequency. Therefore, for a robust comparison we only compare the first harmonic

results, where it is known to radiate primarily at side angles. The results predicted by

the monopole array theory are also included for comparison. The number and relative

strengths of the effective sources are kept the same as those used in figure 10.

As can be seen in figure 11, in the case of M− = 1.5, the experimental data shows

a major lobe to the side of the jet, and another lobe in the upstream direction with a

slightly weaker intensity. In addition, note that in the downstream direction, the acoustic

radiation becomes much weaker, as can be seen at the observer angle θ = 30◦. The results

from the monopole array theory exhibit three lobes of nearly the same intensity, one in

the upstream direction, one in the downstream direction, and another to the side of

the jet. The agreement with the experimental data is good when 60◦ < θ < 135◦, but

much less so in the downstream direction. The present model prediction also exhibits
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three lobes, one dominant lobe to the side of the jet, one weaker lobe in the upstream

direction, and another lobe peaks at 25◦ with a much weaker intensity. Both the position

and the relative intensity of the three lobes agree well with the experimental data.

In the case of M− = 1.6, as can be seen in figure 11(b), the experimental data shows a

dominant lobe to the side of the jet, while another lobe appears slightly downstream with

a weaker intensity. Note that a much weaker acoustic wave radiates to the downstream

direction. The prediction obtained by the monopole array theory shows three lobes of

the same intensity. Again, the agreement with the experimental data is good when 60◦ <

θ < 120◦, but much less satisfactory in the downstream direction. The present model

prediction also exhibits three lobes, one dominant lobe to the side of the jet, one weaker

lobe in the upstream direction, and another peaks at 30◦ with a much weaker intensity.

Both the position and the relative intensity of the latter two lobes agree well with the

experimental data. In both the monopole array theory and the present model, it is difficult

to drama a conclusion about the agreement when θ approaches 135◦ due to the very

sparse data points. Because the experimental results only cover an observer angle of 30◦

to 135◦, the directivity patterns as the observer angle approaches 180◦ and 0◦ cannot be

examined. However, the numerical results in figure 10 show a quick decay as the observer

angle approaches 180◦ and 0◦. Similar phenomenon has been widely reported in numerous

experiments for circular nozzles, such as those by Norum (1983) and Powell et al. (1992).

Such an important feature can be well captured by the present model, compared to earlier

models.

Note that the present model makes use of a number of linear approximations, for

example, both the shock and instability waves are of small magnitude. It is mentioned

that supersonic jets may be regarded as weakly imperfectly-expanded when |M2
−−M2

1 | 6
1 (Tam & Tanna 1982; Tam et al. 1985). It can be seen that both the LES simulation

and the experiments satisfy this condition. Therefore, the present model may be used to

compare with the two cases. However, deviation may occur if intense shocks are involved.

In such cases, we would not expect accurate predictions, but it may be possible that some

important features of the nonlinear screech may still be captured by the linear model.

In summary, in this section we show that the effective noise directivity due to the

interaction between the instability waves and one shock cell has an intrinsic shape that

is close to that of the overall screech directivity. In particular, figure 7(a) shows that

the directivity for the fundamental tone has a major lobe in the upstream direction and

a minor lobe in the downstream direction. Comparing with figure 11(a), we see that

incorporating multiple shock-cell interactions results in two lobes that are both thinner

and closer to 180◦ and 0◦, respectively. This can be expected, because multiple acoustic

sources satisfying (3.4) would lead to constructive intereference near 180◦ (and may or

may not be so near 0◦ depending on operating conditions). Therefore, the two radiation

lobes after incorporating multiple effective sources would become thinner and closer to



30 Binhong Li and Benshuai Lyu

Figure 12. The normalized near-field pressure immediately outside the jet (x0 is the starting

position of the effective source) due to the one-cell interaction (αi 6= 0). The Mach number

of the fully-expanded jet flow is 1.5. The shock spacing is 2.236, therefore the effective sound

source is located between 0 and 2.236. The labels (a), (b), and (c) represent the results at the

fundamental frequency, its first and second harmonics, respectively.

the jet centerline. Similar trends can be observed for the first harmonic by comparing

figures 7 and 11

3.3. Near-field pressure and noise generation mechanism

To further examine the noise generation due to the interaction between shock and

instability waves, we can calculate the near-field pressure perturbation p+ by numerically

integrating (2.68). In the results shown below, all lengths are nondimensionalized by the

height of the jet D. The shock spacing can be obtained from (3.1). Figure 12 shows

the pressure perturbation immediately outside the jet due to the interaction between

instability waves and one shock cell. Labels (a), (b), and (c) represent the results at

the fundamental frequency, its first and second harmonics, respectively. It can be seen

that at the fundamental frequency, the near-field pressure has a dominated distribution

in the upstream direction, while at its first harmonic it shows a strong distribution

perpendicular to the jet flow. This is in good agreement with the far-field directivity

pattern shown in figure 7. For the second harmonic, two major distribution lobes are

visible around 80◦ and 110◦, whereas the radiation at θ = 90◦ is relatively weak. These

results are in good agreement with the directivity patterns in the far field, as shown in

figure 7(1). When the Mach number of the fully-expanded jet changes to 1.3 or 1.2, as
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Figure 13. The normalized near-field pressure immediately outside the jet (x0 is the starting

position of the effective source) due to the one-cell interaction (αi 6= 0). The Mach number

of the fully-expanded jet flow is 1.3. The shock spacing is 1.661, therefore the effective sound

source is located between 0 and 1.661. The labels (a), (b), and (c) represent the results at the

fundamental frequency, its first and second harmonics, respectively.

shown in figures 13 and 14, respectively, similar agreement between the near- and far-field

is achieved, and we omit a repetitive description for brevity.

It is interesting to note that for the fundamental frequency the near-field pressure

perturbations span the entire shock cell, while for the harmonics they appear to be

somewhat localized near the end of the shock, as illustrated in figures 12(b-c), 13(b-

c), and 14(b-c). This phenomenon was also reported in a recent experiment conducted

by Semlitsch et al. (2020). However, since the present model has a periodic nature by

construction, we cannot determine whether the sources are physically distributed or

localized. But it is interesting to note these near-field behaviours.

Using the model and results of the near-field pressure fluctuations, we now are in a

position to examine the noise generation mechanism due to the interaction between shock

and instability waves. As illustrated in section 2.4, the velocity potential takes the form

φi+ =
UD

π

∫ +∞

−∞

D1(λ)e
−(iλx+iωt+γ+y)dλe−iωt. (3.7)

In the far field, φi+ can be estimated by the saddle point method. The saddle point λ0 is

−ωM+ cos θ, where θ represents the observer angle to the downstream direction. It can be

shown that the D1(λ) is connected with the Fourier transform of the near-field pressure

fluctuations (along a fixed y0). It is known that in supersonic jets, the phase velocity of



32 Binhong Li and Benshuai Lyu

Figure 14. The normalized near-field pressure immediately outside the jet (x0 is the starting

position of the effective source) due to the one-cell interaction (αi 6= 0). The Mach number

of the fully-expanded jet flow is 1.2. The shock spacing is 1.327, therefore the effective sound

source is located between 0 and 1.327. The labels (a), (b), and (c) represent the results at the

fundamental frequency, its first harmonic and second harmonics, respectively.

near-field pressure fluctuations

Mach wave

θ*

c0

ux

Figure 15. Schematic of the Mach wave radiation in supersonic jets. The phase velocity of the

near-field pressure fluctuations along the jet flow is ux, while the phase velocity of the radiated

sound is c0.

the near-field pressure fluctuations along the jet flow can be supersonic relative to the

ambient speed of sound, which leads to the Mach wave radiation (Tam & Tanna 1982).

As shown in figure 15, the Mach angle satisfies

θ∗ = arccos(
c0
ux

), (3.8)

where θ∗ represents the direction of Mach wave radiation, and ux, c0 denote the phase
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velocities along the jet flow and the radiation direction, respectively. In our case, the

phase velocity of the near-field pressure fluctuations in the +x direction is equal to

−ω/λ, while the Mach wave has the phase velocity of 1/M+ in the radiation direction.

So from (3.8), we can obtain

θ∗ = arccos(− λ

M+ω
). (3.9)

It is straightforward to find that λ = −ωM+ cos θ∗, which is exactly the same as the

saddle point λ0. In fact, the saddle point precisely matches the x component of the

wavenumber of the Mach wave propagating to the θ direction. As the observer angle (or

the Mach wave radiation angle) changes from 0 to π, the saddle point λ0 changes from

−ωM+ to ωM+ correspondingly. Therefore, the noise radiated at angle θ is directly

related toD1(λ0) through the Mach wavemechanism, as shown in (3.7). We may therefore

examine the directivities of the sound generation by examining |D1(λ)| between −ωM+

and ωM+. Figure 16 shows |D1(λ)| as a function of λ. We see that sound radiates

primarily to the upstream direction (λ > 0), which is in good agreement with the

experimental data.

However, compared with the result in figure 7, there is no quick decay of D1(λ) as

λ → ωM+, so the sound at 180◦ appears to be the strongest. This appears to contradict

figure 7. This is because |D1(λ0)| can only show the overall shape of the directivity

pattern, but the directivity is in fact determined by |D1(λ0) sin θ| instead. We can show

this by rewriting (3.7) as

φi+ =
UD

π

∫ +∞

−∞

D1(λ)e
−r(iλ cos θ+γ+ sin θ)dλe−iωt, (3.10)

where r again denotes the radial distance, and θ represents the observer angle. We

consider the substitution

λ = −ωM+ cos(θ + β), (3.11)

with which (3.10) can be rewritten as

φi+ =
UD

π

∫

P∗

D1(−ωM+ cos(θ + β)) sin(θ + β)eiωM+r cos βdβe−iωt, (3.12)

where P ∗ denotes the new integration contour in the complex β plane. We see that

the exponent term in (3.12) is independent of θ, and now if we use the saddle point

method (the saddle point is β0 = 0), we obtain

φi+ =
UD

π
D1(λ0) sin θF (r, β), (3.13)

where F (r, β) is independent of θ. So the result which determines the far-field directivity

pattern is indeed |D1(λ0) sin θ|.
To better understand this, we take the classical sound field of a monopole as an

example. Consider a monopole located at (0, 0) in the x− y plane, as shown in figure 17.
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Figure 16. |D(λ)| at the frequency of the fundamental tone. The Mach number of the

fully-expanded jet flow is 1.3.
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Figure 17. The schematic of a monopole located at (0, 0) and its radiated sound.

Its velocity potential φ∗ satisfies the homogeneous Helmholtz equation, i.e.

∇
2φ∗ + ω2M2

+φ
∗ = 0. (3.14)

Its axisymmetric solution in the infinite space takes the form φ∗ = H1
0 (ωM+r), where

H1
0 (ωM+r) is the 0th-order Hankel function of the first kind and r is the radial distance

to the sound source. Note such a solution has a uniform directivity. Although we have

obtained the exact solution, we still repeat the calculation process to demonstrate how

the factor sin θ emerges. Similar to (2.68), Fourier transform can be used to solve (3.14),

and the solution is

φ∗(x, y) =
1

2π

∫ +∞

−∞

D∗(λ)e−(iλx+γ+y)dλ. (3.15)

Since φ∗ is already known, D∗(λ) can be obtained by taking the Fourier transform of

H1
0 (ωM+r) along y = 0. It is straightforward to find that

D∗(λ) =
2

√

ω2M2
+ − λ2

, (3.16)

where suitable branch of
√

ω2M2
+ − λ2 is chosen. In the far field, the saddle point method
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can be used to estimate (3.15). The saddle point is λ0, and the final result reduces to

φ∗(r, θ) =

√

M+ω√
2π

D∗(λ0)sinθ
eiω(M+r−π/4)

√
r

+O(r−3/2). (3.17)

Here D∗(λ0) = 2/ωM+ sin θ, and φ∗(r, θ) =
√

2/πωM+re
iω(M+r−π/4), which is exactly

the far-field approximation of H1
0 (ωM+r). We can see that the directivity is indeed

determined by |D∗(λ0) sin θ| rather than |D∗(λ0)|. In fact, the coefficient D∗(λ0) =

2/ωM+ sin θ → ∞ as the observer angle θ → 180◦. It is |D∗(λ0) sin θ| that remains

bounded and is independent of θ as expected from the solution H1
0 (ωM+r).

Figure 16 only shows results for the fundamental frequency at M− = 1.3. Similar

results can be obtained for higher harmonics at other Mach numbers. We see that noise is

primarily generated through the Mach wave mechanism. Note that Mach wave radiation

can also occur in perfectly-expanded supersonic jets via jet instability waves. However,

in this paper, we focus on the interaction between shock and instability waves, where

the near-field fluctuations with supersonic phase speed lead to sound generation. This is

not to be confused with the convectional Mach wave radiation due to the jet instability

waves in perfectly-expanded supersonic jets.

4. Conclusion

An analytical model is developed in this paper to predict the sound arising from the

interaction between shock and instability waves in imperfectly-expanded 2D jets. Both

shock and instability waves are assumed to be of small amplitudes so that linear theories

may be used. A vortex-sheet model is used to describe the base jet flow, and 2D Euler

equations are subsequently linearised around this base flow to determine the governing

equations for shock, instability waves and their interaction, respectively. The interaction

between shock and instability waves is determined by solving an inhomogeneous wave

equation while simultaneously matching kinematic and dynamic conditions on the vortex

sheets. The generated sound in the far field is obtained in a closed form after Fourier

transform is used in conjunction with the saddle point method.

The screech frequencies are determined by using the constructive interference assump-

tion proposed by Powell and show good agreement with experimental results. The model

can be used to predict the sound due to the instability waves interacting with one shock

cell, as well as that with a number of shock cells. The directivity of the sound due to the

one-cell interaction is shown to resemble that of the total sound field. It is interesting

to note that the noise directivity is sensitive to the local growth rate of the instability

waves interacting with the shock cells to generate sound and may be used to explain

the discrepancies observed across different experiments. When multiple shock cells are

included, the present model shows better agreement with experiments and simulations

than the monopole array theory. In particular, the present model corrextly captures the

rapid decay of the acoustic radiation when θ approaches 180◦ and 0◦, respectively. In
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particular, noise radiation primarily occurs in the upstream direction but becomes weaker

as the observer angle gradually approaches 180 degrees, which is in better agreement with

experimental results compared with earlier models.

The near-field pressure fluctuation due to the shock-instability interaction is subse-

quently studied. It is shown that the near-field pressure fluctuation has a distribution

that is consistent with the far-field directivity patterns. By examining the wavenumber

matching of the near-field pressure, we find that noise is generated primarily through

the Mach wave mechanism. It is shown that the model developed in this paper can

correctly capture the essential physics and may be used to further study the screech in

imperfectly-expanded supersonic jets.
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Appendix A.

The corresponding velocity, pressure perturbations within the jet, and the vortex are

um = aA cos(aβy) cos(ax), (A 1)

vm = −aβA sin(aβy) sin(ax), (A 2)

pm = −ρ−aUA cos(aβy) cos(ax). (A 3)

Note the subscripts in parameters A1 and a1 are omitted for clarity. It is worth noting

that all these shock-associated perturbations are independent of time. The vortex sheet

deflection at the boundary of jet flow reduces to

hm =











A

U
β sin(

1

2
aβ) cos(ax), y = 1/2

−A

U
β sin(

1

2
aβ) cos(ax), y = −1/2.

(A 4)

Appendix B.

The corresponding pressure and velocity are

pv = iωU2ei(αx−ωt) ×



























ρ+
M2

+

e−m+y, y > 1
2

ρ−
M2

−

(k2e
−m−y + k1e

m−y), y 6 | 12 |
ρ+
M2

+

k3e
m+y, y < − 1

2 ,

(B 1)
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uv = iαUei(αx−ωt) ×



























1

M2
+

e−m+y, y > 1
2

1

M2
−

ω

ω − α
(k2e

−m−y + k1e
m−y), y 6 | 12 |

1

M2
+

k3e
m+y, y < − 1
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(B 2)

vv = Uei(αx−ωt) ×



























1

M2
+

m+e
−m+y, y > 1

2

1

M2
−

ω

ω − α
m−(−k2e

−m−y + k1e
m−y), y 6 | 12 |

1

M2
+

m+k3e
m+y, y < − 1

2 .

(B 3)

The deflection of the jet boundary due to the instability waves is

hv(x, t) =















− i

ω

m+

M2
+

e−
1
2
m+ei(αx−ωt), y = 1/2

i

ω
k3

m+

M2
+

e−
1
2
m+ei(αx−ωt), y = −1/2.

(B 4)
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